Pseudo-Convex Decomposition of Simple Polygons
نویسندگان
چکیده
We extend a dynamic-programming algorithm of Keil and Snoeyink for finding a minimum convex decomposition of a simple polygon to the case when both convex polygons and pseudo-triangles are allowed. Our algorithm determines a minimum pseudo-convex decomposition of a simple polygon in O(n) time where n is the number of the vertices of the polygon. In this way we obtain a well-structured decomposition with fewer polygons, especially if the original polygon has long chains of concave vertices.
منابع مشابه
Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-triangles
We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...
متن کاملOn Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles
We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...
متن کاملDecomposing a simple polygon into pseudo-triangles and convex polygons
In this paper we consider the problem of decomposing a simple polygon into subpolygons that exclusively use vertices of the given polygon. We allow two types of subpolygons: pseudo-triangles and convex polygons. We call the resulting decomposition PTconvex. We are interested in minimum decompositions, i.e., in decomposing the input polygon into the least number of subpolygons. Allowing subpolyg...
متن کاملFast Triangulation of Simple Polygons
We present a new algorithm for triangulating simple polygons that has four advantages over previous solutions [GJPT, Ch]. a) It is faster: Whilst previous solutions worked in time O(nlogn), the new algorithm only needs time O(n+rlogr) where r is the number of concave angles of the polygon. b) It works for a larger class of inputs: Whilst previous solutions worked for simple polygons, the new al...
متن کاملPlanar Point Sets With Large Minimum Convex Decompositions
We show the existence of sets with n points (n > 4) for which every convex decomposition contains more than f§« — § polygons, which refutes the conjecture that for every set of n points there is a convex decomposition with at most n + C polygons. For sets having exactly three extreme points we show that more than n + s/2(n 3) 4 polygons may be necessary to form a convex decomposition.
متن کامل